

Agricoltura fornitore di servizi ecosistemici e energia

 Sono i benefici multipli forniti dagli ecosistemi al genere umano.

 La produzione di energia (fino a 1 MW) è una produzione agraria

Come fare per incrementare la sostanza organica del suolo?

Metodi ordinari	Pratiche di gestione raccomandate (RMP)	
Combustione delle biomasse e rimozione dei	· · · · · · · · · · · · · · · · · · ·	
residui colturali	superficie	
Lavorazioni convenzionali (in particolare	Minima lavorazione, no till e pacciamatura	
aratura)		
Maggese	Cover crops ·	
Monocoltura continua	Rotazione ad elevata diversità	
Agricoltura di sussistenza a bassi input	Gestione mirata degli input	
Utilizzo intenso di fertilizzanti	Gestione integrata dei nutrienti con fertilizzanti	
	organici	
Agricoltura intensiva	Integrazione del pascolo o di prative poliennali	
	negli ordinamenti colturali	
Irrigazione superficiale	Irrigazione a goccia o sub irrigazione	
Utilizzo indiscriminato di fitofarmaci	Gestione integrata delle infestanti	
Coltivazione terreni marginali	Programmi conservativi. Recupero di suoli	
	degradati mediante land - use change	

Le azioni che incrementano il C del suolo

- Alti livelli produttivi. Implica alta biomassa delle radici, residui colturali
- Cover crop
- No till (o lavorazioni che non rivoltano il suolo)
- Fertilizzazione organica con fertilizzanti a elevata stabilità del carbonio

- I fertilizzanti organici possono essere introdotti (abbastanza...) facilmente
- Le cover crop sono "una seccatura" ma offrono diversi benefici
- In suoli poveri è più facile incrementare il carbonio, ma i suoli sciolti lo ossidano facilmente e non lo stabilizzano

Lo Stock di C, non la % di C

Compattamento

Se il suolo si compatta, può aumentare la % in peso del C, ma non è detto che aumenti il carbonio totale del suolo

Sofficità

Se il suolo diventa più soffice, il volume di suolo aumenta (si alza il piano di campagna) la % di C può non aumentare, ma il carbonio totale del suolo aumenta.

La sofficità va ottenuta con l'incremento di carbonio e lombrichi, non solo con le lavorazioni

Il bilancio della CO₂eq atmosferica (negativo è bello)

Sottraggono CO₂ dall'atmosfera

La fotosintesi

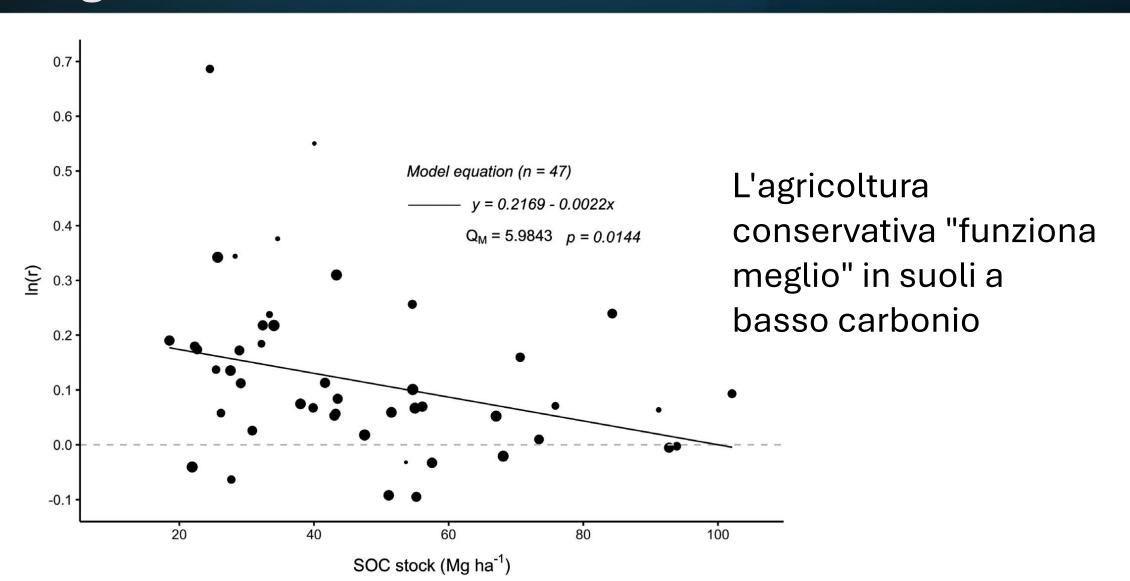
L'incremento della sostanza organica stabile del suolo in quanto è comunque prodotta con la fotosintesi.

Incrementano la CO₂ in atmosfera

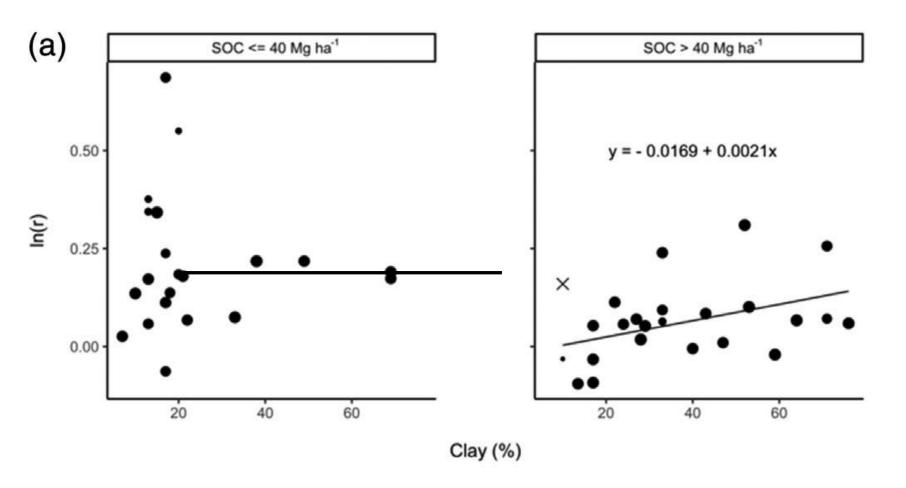
La respirazione delle piante

La respirazione dei microorganismi

La respirazione degli animali


Le machine agricole

Le emissioni di N₂O


Le emission di CH₄

I fertilizzanti di sintesi (?)

Effetto dello stock iniziale del carbonio sui benefici dell'agricoltura conservativa

Suolo: contenuto in argilla

Molti fattori influenzano l'accumulo di C, in maniera complessa e interagendo. Questo del contenuto di argilla è uno dei tanti esempi

Incremento rispetto a baseline o carbon negative?

- I crediti di carbonio sono riferiti a una baseline (ordinarietà)
- In questo modo è possible ottenerli e rappresentano in ogni caso un FONDAMENTALE progresso rispetto allo stato di fatto

Ma

Si può arrivare all'azienda Carbon negative?

Voci negative inevitabili

- Il gasolio: anche con il no till se ne consuma molto.
 - L'essicazione è voce molto pesante, più dell'aratura.
- Le emissioni di N₂O
- I fertilizzanti chimici: se consideriamo l'energia per produrli, trasportarli ecc da 4 a 6 t CO₂ eq per 1 t di N
- Approssimativamente danno lo stesso contributo all'effetto serra.
- Le perdite di CH₄ (da stalle e risaie)

(se considero l'incremento del C stoccato nel suolo, non devo più considerare la respirazione)

L'energia prodotta "va scaricata" dal bilancio

Arriviamo a zero? Approzzo rozzo

Sistema	t ha ⁻¹ CO ₂ eq	
Sistema mais pastone, frumento, prato (4 anni) notill, cover, fert organica, restituzione residui	<mark>-1.85</mark>	0.00
Sistema mais granella frumento soia notill, cover fert organica, restituzione residui	<mark>-0.69</mark>	0.92
Sistema mais granella frumento soia notill, cover fert organica, residui e intercalari al digestore*	<mark>-0.10</mark>	1.39
Sistemi a lavorazioni ridotte, fert organica + minerale, restituzione residui		1.51

^{*} Limite 170 kg ha⁻¹ N – Direttiva nitrati

Cosa occorre fare?

- Il processo è molto complesso, non bastano coefficienti.
 - Ogni azienda, in un dato clima e suolo, ha risposte diversificate.
- Occorrono modelli di simulazione dinamici facili da usare e ben calibrati e validati
 - del C nel suolo
 - delle emission di N₂O
- Tecniche di campionamento avanzato per la verifica delle dinamiche del C nel suolo.
- Conoscenza delle matrici organiche.
- Conoscenza delle dinamiche microbiche e di altri organismi.

Conclusioni

- Lo "zero emission" è un obbiettivo molto difficile da raggiungere ma possibile, e difficile da valutare in termini economici.
- Il riferimento a una baseline è più praticabile e sicuramente porta a effetti positivi.
- L'agricoltura produce cibo (e servizi ecosistemici) e (mia opinione) lo zero emission non è un obbiettivo primario.
- Accrescere il carbonio nel suolo, ridurre gli sprechi energetici, fornire energia (se possible) sono le prime cose da realizzare.