a new era

We guide the world in the transition towards the use of renewable energy.

From the soil to the earth.

Vision & Mission

TerraX bio-H₂

Production of biogenic hydrogen from sustainable biomass

Renewable H₂ for the Mobility Sector & beyond

Bio-H2 Fuel Quality Characteristics:

- Fuel Cell Grade, 99.97% H2 purity (3.7 grade) as of:
- → DIN EN 17124:2022
- \rightarrow UNI EN 17124:2022
- \rightarrow ISO 14687:2019 Grade D
- \rightarrow SAE J2719_201511

*These standards specify the quality characteristics of hydrogen fuel dispensed at hydrogen refueling stations for use in proton exchange membrane (PEM) fuel cell vehicle systems, and the corresponding quality assurance considerations for ensuring uniformity of the hydrogen fuel.

Hydrogen Fuel Cell Quality Standard (ISO 14687:2019 Grade D)		
Specification	Value	
Hydrogen Fuel Index (%)	99,97	
Total Gases (ppmv)	300	
Water (ppmv)	5	
Total Hydrocarbons (ppmv)	2	
Methane (ppmv)	100	
Oxygen (ppmv)	5	
Helium (ppmv)	300	
Nitrogen and Argon (ppmv)	300	
Carbon Dioxide (ppmv)	2	
Carbon Monoxide (ppmv)	0,2	
Total Sulfur Compounds (ppmv)	0,004	
Formaldehyde (ppmv)	0,2	
Formic Acid (ppmv)	0,2	
Ammonia (ppmv)	0,1	
Total Halogenated Compounds (ppmv)	0,05	
Particulate Size (µm)	10	
Particulate Concentration (µg/L)	1	

TerraX R&D Office based at NOI Techpark BZ

Main Focus – Bio-H2 Development:

- Feasibility Studies
- \rightarrow Woodgas to H2 (closed)
- \rightarrow **Biogas to H2** (closed)
- Experimental Development
- Project Development

Zambaldi Philipp, M.Sc. Project Development Hydrogen

R&D Office NOI Techpark Alto Adige/Südtirol Via Alessandro Volta Straße, 13A I-39100 Bolzano/Bozen (BZ) South Tyrol-Alto Adige-Südtirol ITALY

NOI Techpark BZ

Situation in South Tyrol

In 2014 the first H2 distributor opened in Italy:

• H2 Capacity of 360 kg/d

Green Mobility South Tyrol:

- 2014: 2 buses in operation
- 2020: 5 buses in operation
- 2022: 12 (17) buses in operation
- Future: up to 180 (660) buses

Olympia 2026 South Tyrol

Biathlon at Anterselva:

- When: 06.02. 22.02.2026
- Where: South Tyrol Arena Anterselva

Olympic Transport Plan:

- "The province of South Tyrol (together with the "Fondazione Milano Cortina 2026") is responsible for implementing the "Olympic transport plan". To ensure sustainable accessibility to the sports venues, the railway will act as the backbone of public mobility, while the last mile will be covered by environmentally friendly hydrogen shuttle buses."
- "Purchase of <u>48 hydrogen-powered vehicles</u> to be used for the 2026 Milano-Cortina Olympic Games (city buses, intercity buses, shuttle buses, pick-ups, etc.)."

H2 Euregio Masterplan:

 "Planning and expansion of emission-free bus transport in the Dolomite regions and to the 2026 Olympic venues in Anterselva and Cortina d'Ampezzo."

Brenner Green Corridor – South Tyrol

H2 Refuelling Stations:

- Brunico Alperia: 800 kg/d
- Vipiteno A22: 1.000 kg/d
- Bolzano Sud A22/SASA/Alperia
- Merano SASA

H2 Production Sites:

- Bolzano Sud: 2.500 kg/d in autorizzazione
- Bolzano Nord: 2.000 kg/d bloccato

Bio-H2 Production Sites:

- Terento TerraX: 200 kg/d authorized
- Sluderno TerraX: 400 kg/d feasibility study

Biogenic Hydrogen Production from Biogas

Bio-H2 via biogas reforming:

• Biogas Reforming System \rightarrow 400 kg/d system – 160 t/a H2

ightarrow 200 kg/d system – 80 t/a H2

 \rightarrow 100 kg/d system – 40 t/a H2

• Principle with containerized solution:

"Biowasserstoff Terenten" in Terento - South Tyrol

Bio-H2 Reforming:

• Biogas AD plant \rightarrow 200 kW_{el.eq.}

 \rightarrow 200 kg/d bio-H2 system

- ightarrow 80 t/a bio-H2
- \rightarrow 10 buses
- \rightarrow 1.400 GLU

Feed-in tariff expired Revamping of existing small-size biogas plant No possibility to gas grid connection

"Biowasserstoff Terenten" in Terento – South Tyrol

Plant Location:

"Biowasserstoff Terenten" in Terento - South Tyrol

Plant Design:

H2 Kompre

- Bio-H₂ Production Facility
- 300 bar bio-H2 20' Trailer Filling Station

Bestehender sophalberter Zufahrteweg strade discosso adalbate existente

H2 Vertellungssinheit Unita' di distribuzione H2

"Biowasserstoff Terenten" in Terento – South Tyrol

CO₂-Balance:

- Net negative CO₂ Balance from bio-H₂ Production
- Neutralizing your fleet by partial substitution
- 4 H2 Fuel Cell Buses neutralize additional 6 Diesel Buses

bio-H2 Production		
-19	kg CO2/kg H2	
-157	g CO2/MJ H2	
94	g CO2/MJ Diesel	
-251	g CO2/MJ Difference to Diesel	
-30	kg CO2 Difference to Diesel	
-267%	GHG-Reduction to Diesel	
Carbon Credits		
2	Counting	
70	€/t CO2	
-4,20	€/kg H2 Configurazione Base	
-5,05	€/kg H2 Configurazione Rinnovabile	

H2 Fuel Cell Bus		
Tank Capacity	37,5	kg
	5 x 312	L
Range	350	km
Bus Length	12	m
Consumption	10,7	kg/100km
CO2 Balance	-201	kg CO2
Diesel Bus		
Consumption	39	L/100km

Consumption	39	L/100km
	1.399	MJ
CO2-Balance	131,5	kg CO2

"Biowasserstoff Terenten" in Terento – South Tyrol

CO₂-Balance:

- Net negative CO₂ Balance from bio-H₂ Production
- Neutralizing your fleet by partial substitution
- 3 H2 Groomer neutralize additional 5 Diesel Groomer

bio-H2 Production	
kg CO2/kg H2	
g CO2/MJ H2	
g CO2/MJ Diesel	
g CO2/MJ Difference to Diesel	
kg CO2 Difference to Diesel	
GHG-Reduction to Diesel	
Carbon Credits	
Counting	
€/t CO2	
€/kg H2 Configurazione Base	
€/kg H2 Configurazione Rinnovabile	

H2 Snow Groomer			
Tank Capacity	50	kg	
Range	4	h	
Operation	8	h/d	
	5	months	
	1.200	h/a	
Consumption	100	kg/d	
	12,5	kg/h	
	15	t/a	
CO2-Balance	-235	kg CO2	

Diesel Snow Groomer			
Consumption	41	l/h	
	1.470	MJ	
CO2-Balance	138	kg CO2	

TerraX e-NG

Biomethane production from methanation of biogenic CO2 and green H2

Bioraffinerie Dell'Etna – Sicily

Bio-Methanation:

- Biomethane Plant → 500 Sm³/h bio-CH4 → 7.000 t/a bio-CO2
- Biomethanation Plant \rightarrow 500 Sm³/h bio-CH4 \rightarrow 1 MW_{el.eq} Gasifier \rightarrow < 10 MW_{el} EL

Adjacent to biomethane production facility. In combination with pelletisation system for fertilizer production (44.000 t/a pellet).

Bioraffinerie Dell'Etna – Sicily

Bio-Methanation:

- Plant Input → 7.000 t/a bio-CO2 from Biomethane Plant
 → 500 Nm³/h Syngas from Gasifier
 → 160 kg/h H2 from Electrolyzer
- Plant Output \rightarrow 500 Sm³/h Biomethane
 - \rightarrow 1.000 t/a Biochar
 - → 175 kW_{el} autoconsumption syngas+methanation
 - \rightarrow 500 kWel autoconsumption pelletizer

Thank you

TerraX Srl / GmbH

Sede legale: Via Jacobi 6

39031 Brunico (BZ)

- Sede operativa: Via Galilei, 3 37019 Peschiera del Garda (VR)
- info@terrax.it

∞ <u>www.terrax.it</u>

+39 045-9233463

