

Biomatik: la soluzione Zudek per la valorizzazione della CO₂

Dott. Daniele Ziegler, PhD

Area Forum CIB - Pad. D5 Integrazione del reddito: liquefazione, recupero e utilizzo della CO2

6 Novembre 2025, Rimini

LA NOSTRA MISSIONE

Refrigerazione naturale

Zudek ha scelto di concentrarsi solo sui refrigeranti naturali fin dalla sua fondazione a Trieste nel 1990.

Efficienza energetica

L'efficienza energetica è oggi più importante che mai, dato il costante aumento dei prezzi dell'energia e l'obiettivo comune di ridurre il consumo energetico.

Sostenibilità

I refrigeranti naturali, come l'ammoniaca (R717), sono gli unici in grado di fornire una refrigerazione sostenibile ed efficiente con GWP=0 e ODP=0.

Durabilità

Impianti industriali fatti per durare, facilmente aggiornabili.

Con sede a Trieste, Zudek è il cuore produttivo dell'intero gruppo a livello globale e il centro commerciale per l'Unione Europea.

La nostra sede di Londra gestisce la distribuzione globale al di fuori dell'UE e offre supporto tecnico e servizi post-vendita dedicati per il Regno Unito.

Aqest, con sede a Desenzano del Garda, è la nostra azienda del gruppo specializzata nel trattamento delle acque.

LA NOSTRA STORIA

Alessandro Zudek

lavora come manutentore su impianti di refrigerazione per il settore navale

1989

Studi e ricerca sull'ammoniaca come refrigerante

Anno di fondazione di **Zudek Srl**

1990

1994

Nasce Varimatik

la prima macchina Zudek. Un chiller con inverter a bassa carica di ammoniaca

1998

Viene progettato e sviluppato Telematik, il nostro servizio di telemetria per la gestione e il controllo da remoto

2019

Produciamo Safematik, il sistema di sicurezza e abbattimento d'ammoniaca

2013

Nasce Enermatik, il nostro assorbitore a idrato d'ammonio e in grado di distillare ammoniaca

2012

Lanciamo sul mercato Zeromatik, il nostro sistema per la produzione di acqua gelida

2008

Airmatik

Il nostro chiller condensato ad aria, plug & play, a bassa carica di ammoniaca

2004

Costruiamo la nostra prima pompa di calore, Recumatik

2022

Nascono le nostre pompe di calore ad alta temperatura > 90°C **Recumatik HT**

2023

Progettazione e realizzazione di

Biomatik,

il sistema per la purificazione e liquefazione della CO₂

2025

Esce sul mercato Windmatik, il nostro chiller condensato ad aria per il

settore HVAC

2025

Apriamo la nostra sede internazionale a Londra, **Zudek International Ltd.**

PERCHÉ BIOMATIK?

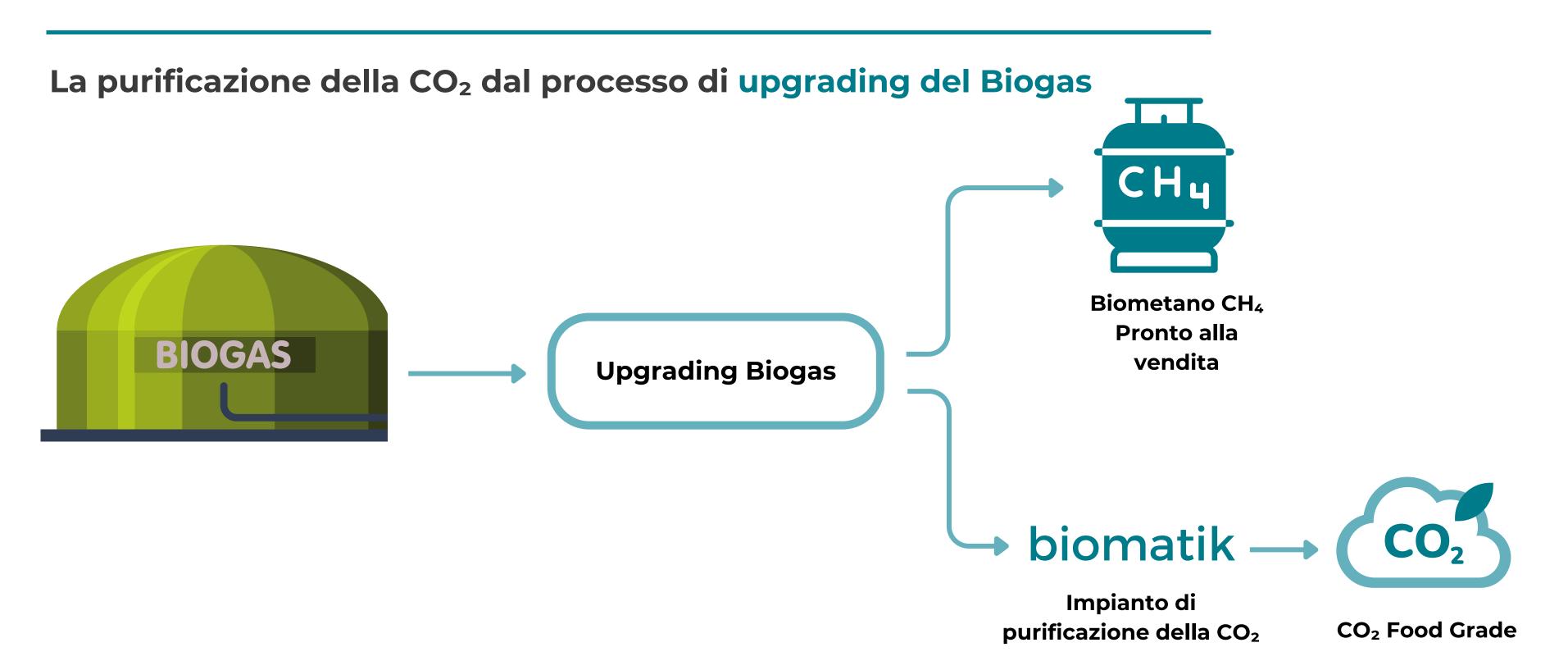
Per la purificazione e liquefazione della CO₂ dai processi di:

- upgrading del Biogas
- separazione e purificazione della CO2 proveniente da fumi di combustione CCU (Carbon Capture and Utilitation)

I produttori di Biogas si trovano ad avere grandi quantità di BioCO₂ da smaltire dal processo di produzione di Biometano. Il Biogas viene prodotto a partire da scarti zootecnici o da frazione organica dei rifiuti.

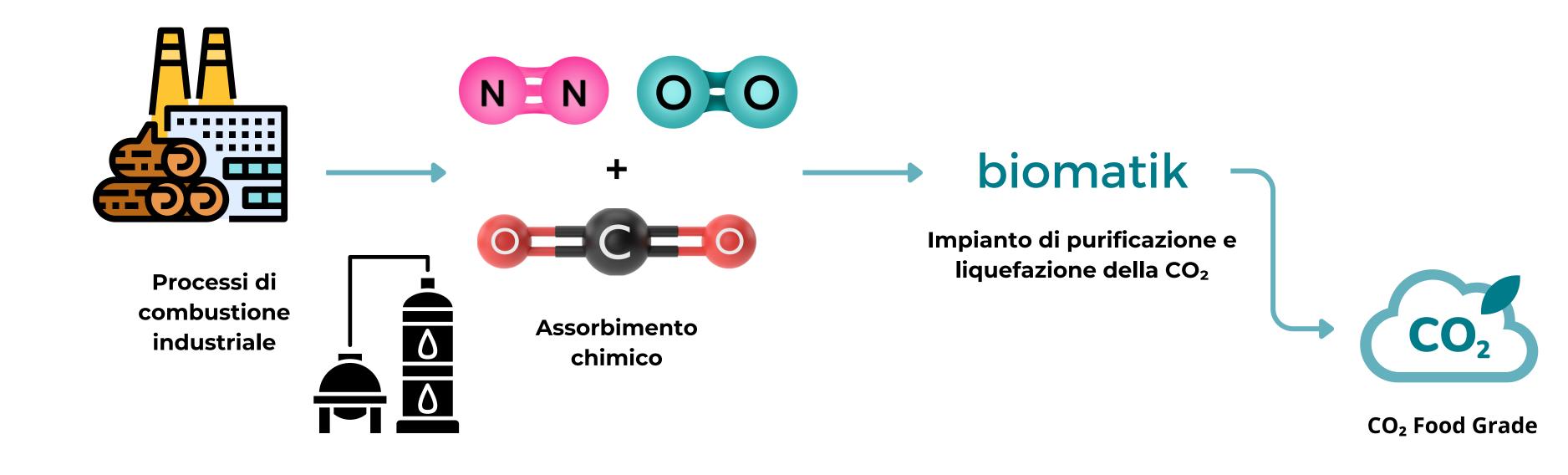
Zudek ha progettato Biomatik, il sistema dedicato alla purificazione e liquefazione della CO₂, fino allo standard Food Grade.

Purificare la CO₂ ha diversi vantaggi, sia a livello ambientale che a livello commerciale.


Necessità di catturare la CO₂ presente nei fumi di combustione, ad esempio da un processo produttivo di lana di roccia.

Il livello di purezza Food Grade permette alla CO₂ di essere impiegata in ambito: alimentare, farmaceutico e chimico.

PERCHÉ BIOMATIK?



PERCHÉ BIOMATIK?

La separazione e purificazione della CO₂ proveniente da *fumi di combustione CCU (Carbon Capture and Utilitation)*

zudekoo

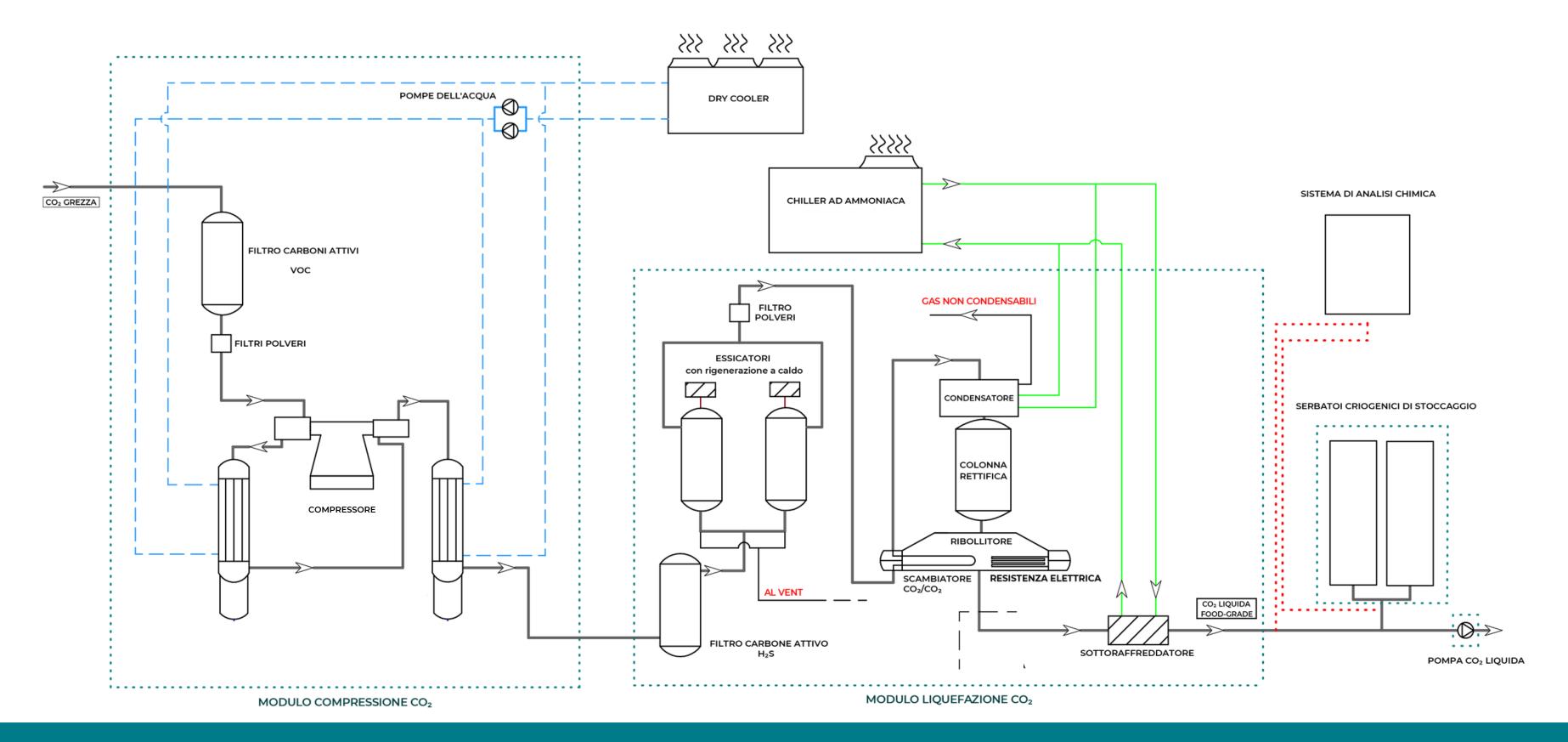
biomatik

Per liquefare e purificare la CO₂ si utilizzano basse temperature e processi di distillazione.

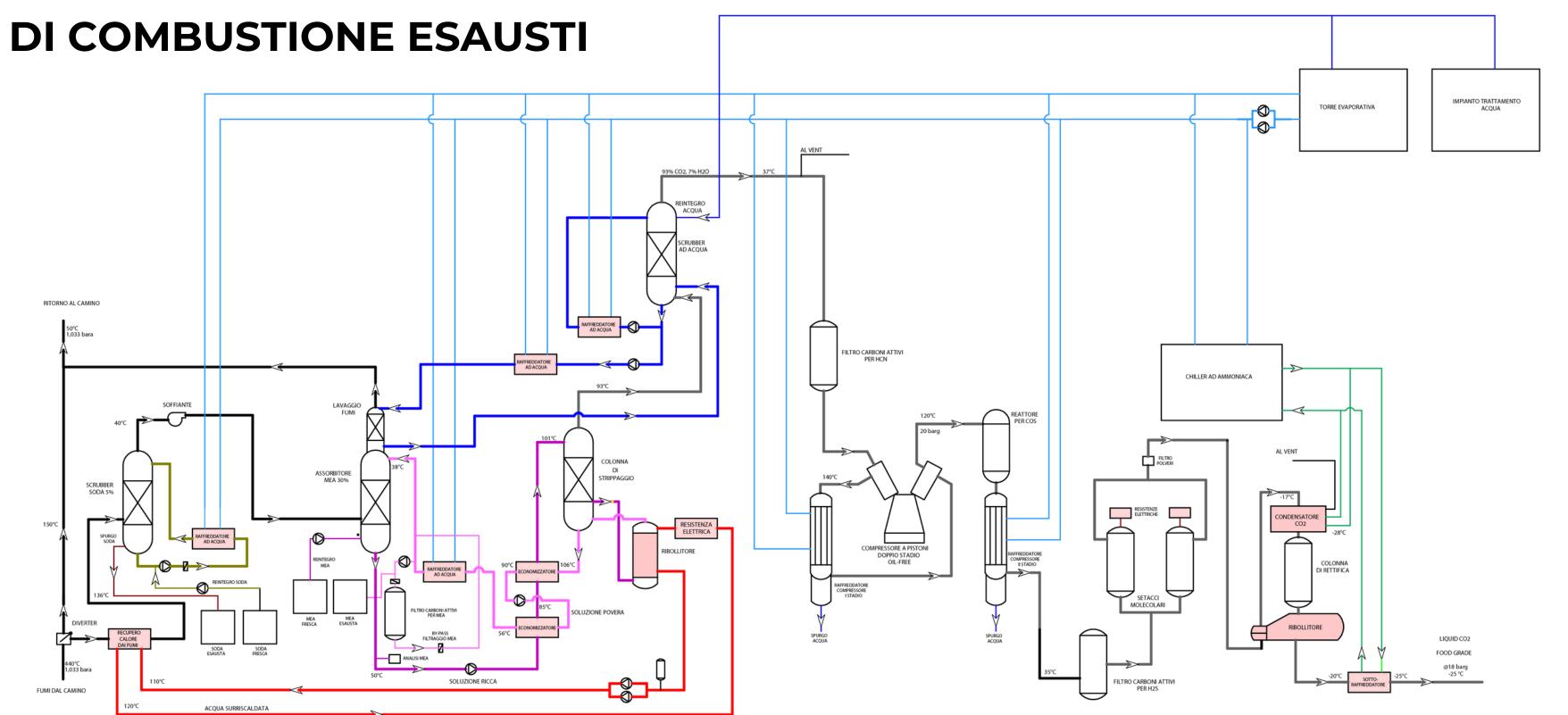
Zudek ha 35 anni di esperienza nella produzione di freddo e nella gestione di distillazioni di processo.

Zudek è sinonimo di efficienza, affidabilità e sostenibilità.

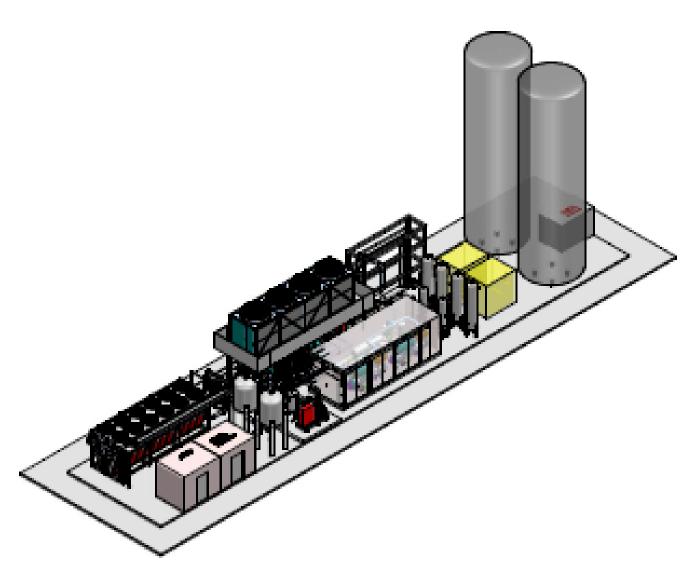
Anche Biomatik, come le altre macchine Zudek, utilizza solo refrigeranti naturali, come l'ammoniaca e la CO₂. L'ammoniaca e la CO₂ sono in assoluto i refrigeranti più sostenibili, grazie al loro bassissimo GWP e ODP.


Tutte le macchine Zudek sono sempre costruite su misura per il cliente. Cerchiamo sempre di individuare la soluzione migliore per le sue necessità costruendo macchine personalizzate. Fornitura impianto con formula "chiavi in mano".

Biomatik viene monitorato costantemente dal nostro sistema Telematik. Questo permette di tracciare le performance della macchina per migliorarne l'efficienza ed intervenire tempestivamente in caso di malfunzionamento.


SCHEMA DI PROCESSO DA UPGRADING DI BIOGAS ZUdekoo

PROCESSO DA RECUPERO DI FUMI


CONDIZIONI IN INGRESSO

Stabilire le condizioni della CO₂ grezza in ingresso all'impianto Zudek Biomatik è fondamentale per un dimensionamento ottimale dell'impianto e per la selezione dei componenti

- Composizione chimica
- Temperatura
- Pressione
- Portata in massa e/o in volume standard

Il nostro ufficio tecnico di ingegneria chimica sceglie le migliori soluzioni dedicate ad ogni tipologia di gas grezzo

FILTRI A CARBONI ATTIVI

- Rimozione COV (Composti Organici Volatili)
- Rimozione H₂S (idrogeno solforato)
- Rimozione altre specie se presenti (es.: ammoniaca)
- Possibilità di installazione in serie e/o in parallelo
- Basse perdite di carico
- Nessuna manipolazione sul sito

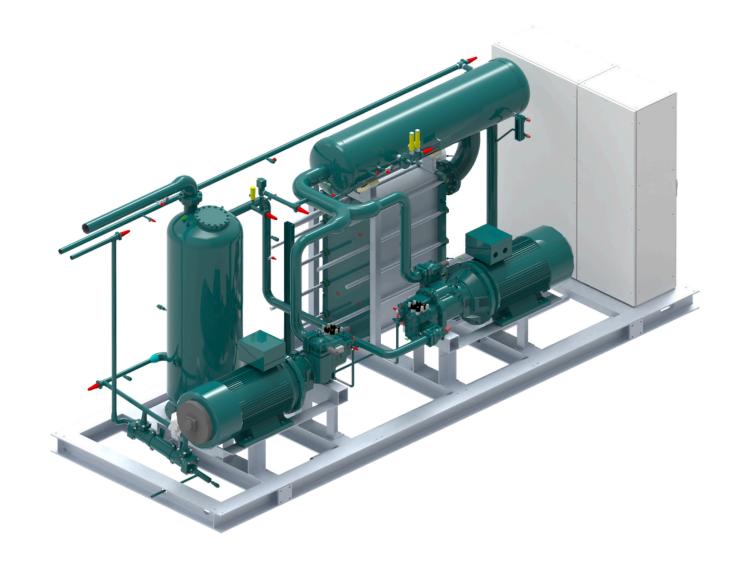
COMPRESSORI CO₂

A VITE LUBRIFICATA

- Monostadio o bistadio
- Manutenzione contenuta
- Sistema di filtraggio dell'olio con filtri coalescenti e a carboni attivi

A PISTONI OIL FREE

- Bistadio
- Totale assenza di olio nel gas allo scarico


FILTRI AD ALLUMINA ATTIVATA

- Elevata capacità di adsorbimento d'acqua
- Range granulometria 2-5 mm
- Elevata superficie specifica
- Sistema di rigenerazione automatica possibile con CO2 di processo
- Recipienti in acciaio inox

IMPIANTO FRIGORIFERO AD AMMONIACA

- Possibilità di condensazione ad acqua o ad aria
- Bassa carica di ammoniaca
- Teleassistenza da remoto (Telematik)
- FAT prima della consegna
- Possibilità di cabinatura afonica

LIQUEFATTORE E SOTTORAFFREDDATORE

- Controllo accurato della temperatura di condensazione della CO₂
- Gestione ottimale della temperatura di sottoraffreddamento della CO2
- Ingresso in colonna di distillazione nelle condizioni ottimali

COLONNA DI STRIPPAGGIO

- Eliminazione degli incondensabili (N₂, O₂, CH₄, CO₄)
- Colonna in acciaio inox
- Materiale di riempimento strutturato Mellapack oppure riempimenti alla rinfusa
- Ribollitore con uscita CO2 liquida purificata

SERBATOI DI STOCCAGGIO CO2 (non di nostra costruzione)

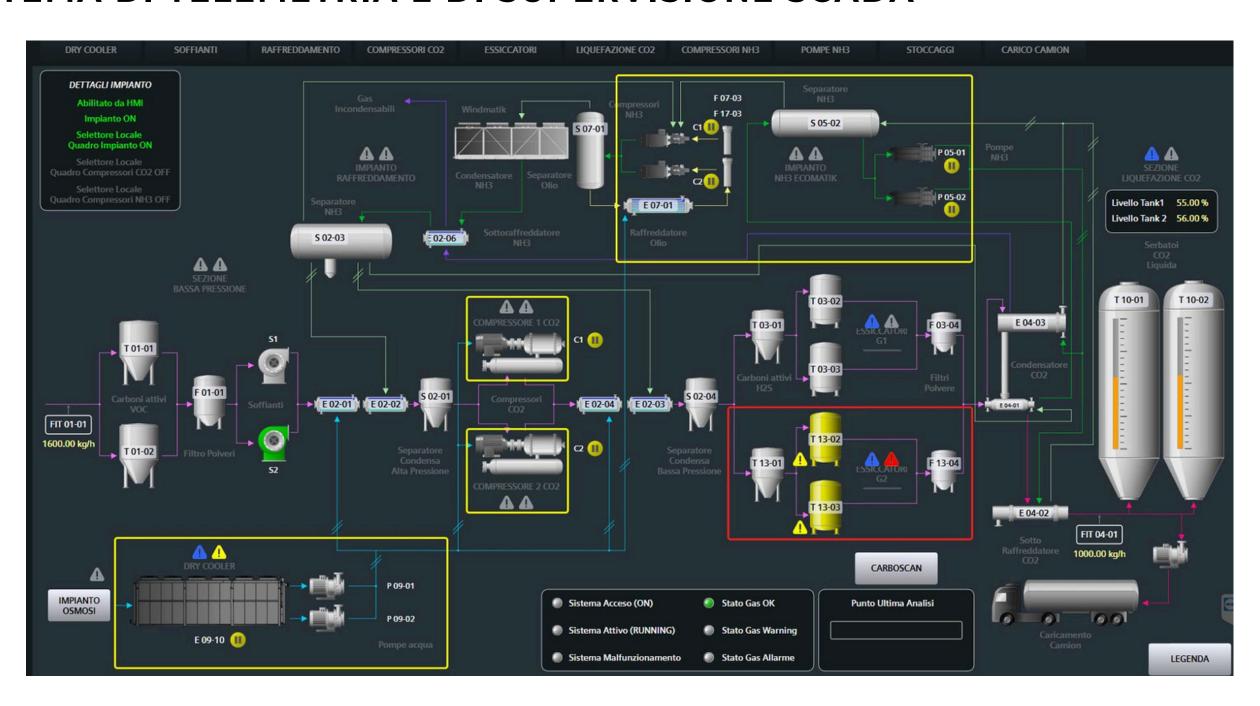
- Stoccaggio della CO2 liquida in serbatoi criogenici isolati
- Diverse dimensioni (30, 50, 70, 100 mc)
- Controllo accurato delle condizioni del prodotto
- Interfaccia di trasferimento per i camion dedicati al trasporto (non di nostra costruzione)
- Costruzione su richiesta secondo Regolamento EU 1935/2004 MOCA

MODULO DI POMPAGGIO DELLA CO2 LIQUIDA

- Pompaggio della CO2 prodotta mediante pompa criogenica
- Trasmissione della CO2 prodotta al camion per il trasporto
- Integrabile con sistema di analisi chimica e PLC dell'impianto
- Costruzione su richiesta secondo Regolamento EU 1935/2004 MOCA

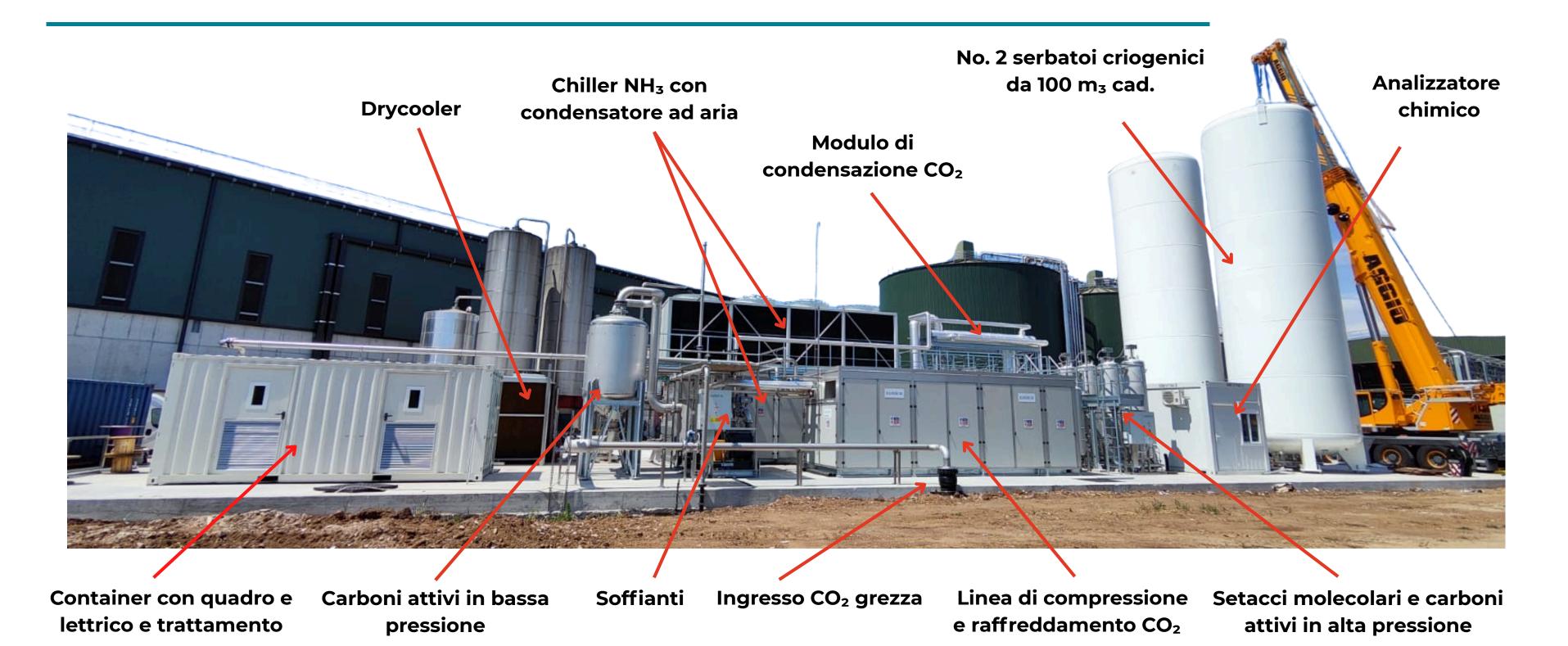
SISTEMA DI ANALISI DEL PRODOTTO FINALE IN CONTAINER (non di nostra costruzione)

FTIR + UV-Vis


	PARAMETRO	FORMULA	U.M.	LOD CARBOSCAN 300	ISBT-LOD	ISBT-LIMIT
ANALISI SECONDO EIGA/ISBT						

1	CO2 Purity (%)	CO ₂	% v/v	100%-SUM OF OTHER COMPOUNDS	≤99,0% (2.0)	99,9% min
2	methane	CH₄	ppm v/v	LOD 0,3 ppm	≤1 ppm (10.0)	30,0 ppm
3	Total of volatile hydrocarbons	CnHm	ppm v/v	LOD 1,5 ppm	N.A.	50,00 ppm
4	propane	C ₃ H ₈ O	ppm v/v	LOD 0,3 ppm	N.A.	20,0 ppm
5	ethane	C ₂ H ₆	ppm v/v	LOD 0,3 ppm	N.A.	20,0 ppm
6	benzene	C ₆ H ₆	ppm v/v	LOD 0,002 ppm	≤0,005 ppm (12.0)	0,02 ppm
7	Toluene	C ₇ H ₈	ppm v/v	LOD 0,002 ppm	≤0,005 ppm (12.0)	0,02 ppm
8	Xylene	C ₈ H ₁₀	ppm v/v	LOD 0,002 ppm	≤0,005 ppm (12.0)	0,02 ppm
9	Total BTX	C ₆ H ₆ ,C ₇ H ₈ ,C ₈ H ₁₀	ppm v/v	LOD 0,003 ppm	≤0,005 ppm (12.0)	0,06 ppm
10	ammonia	NH ₃	ppm v/v	LOD 0,2 ppm	≤0,5 ppm (6.0)	2,5 ppm
11	nitric oxide	NO	ppm v/v	LOD 0,1 ppm	≤0,1 ppm (7.0)	2,5 ppm
12	nitrogen dioxide	NO ₂	ppm v/v	LOD 0,1 ppm	≤0,1 ppm (7.1)	2,5 ppm
13	sum nitrogen oxides	NOx	ppm v/v	NO+NO2 LOD 0,2 ppm	≤0,2 ppm (7.0)	5 ppm
14	acetaldehyde	C ₂ H ₄ O	ppm v/v	LOD 0,01 ppm	≤0,1 ppm (11.0)	0,2 ppm
15	methanol	CH ₄ O	ppm v/v	LOD 0,3 ppm	≤5 ppm (9.0)	10,0 ppm
16	sulphur dioxide	SO ₂	ppm v/v	LOD 0,01 ppm	≤0,02 ppm (14.0)	1,0 ppm
17	Sum sulfides (excluding SO ₂)	S	ppm v/v	LOD 0,01 ppm	≤0,01 ppm (13.0)	0,10 ppm
18	oxygen	O ₂	ppm v/v	LOD 0,3 ppm	≤1 ppm (4.0)	30, 0 ppm
19	carbon monoxide	co	ppm v/v	LOD 0,2 ppm	≤5 ppm (5.0)	10,0 ppm
20	moisture	H₂O	ppm v/v	LOD 0,3 ppm	≤0,5 ppm (3.0)	20,0 ppm
21	Hydrogen sulphide	H₂S	ppm v/v	LOD 0,01 ppm	N.A.	0,10 ppm
22	Carbonyl sulfide	cos	ppm v/v	LOD 0,005 ppm	N.A.	0,10 ppm
23	ethanol	C ₂ H ₅ OH	ppm v/v	LOD 0,3 ppm	N.A.	20,0 ppm
ANALISI EXTRA RISPETTO RICHIESTA MINIIMA ISBT						
24	ethylene	C ₂ H ₄	ppm v/v	LOD 0,3 ppm	-	-
25	Carbon sulfide	CS ₂	ppm v/v	LOD 0,015 ppm	-	-
26	Methyl mercaptan	CH₃SH	ppm v/v	LOD 0,01 ppm	-	-
27	Dimethyl sulfide	C₂H ₆ S	ppm v/v	LOD 0,01 ppm	-	-
28	Ethyl acetate	C ₄ H ₈ O ₂	ppm v/v	LOD 0,3 ppm	-	-
29	hydrogen cyanide	HCN	ppm v/v	LOD 0,08 ppm	≤0,2 pm (17.0)	0,5 ppm
30	phospine	PH₃	ppm v/v	LOD 0,02 ppm	≤0,1 ppm (19.0)	0,3 ppm
31	Vinyl chloride	C ₂ H ₃ CI	ppm v/v	LOD 0,1 ppm	≤0,002 ppm (18.0)	-

FTIR + UV-Vis + GC


SISTEMA DI TELEMETRIA E DI SUPERVISIONE SCADA

Supervisione e telemetria dell'impianto con manutenzione preventiva e predittiva ottimizzata

ESEMPIO DI INSTALLAZIONE

STRUMENTI DI ANALISI CHIMICA

Fornitura degli strumenti di controllo di processo e di qualità della CO2 liquida food grade

1. Monitoraggio processo automatizzato

2. Controllo qualità del prodotto finito

3. Certificati di qualità secondo standard EIGA-ISBT

4. Analisi rapide ed accurate gestibili da remoto con software

"L'anidride carbonica può passare da scarto a risorsa di valore.

Promuovere la cultura del riciclo e del riutilizzo è il più grande atto civile che un individuo o un'azienda devono compiere."

Grazie.