

Pioneer hi-bred Italia

In collaborazione con

Trademarks of Corteva Agriscience and its affiliated companies. ©2025 Corteva.

STRATEGIA PER FISSARE AZOTO NEL SUOLO E MASSIMIZZARLO NELL'ARIA

Sopra il suolo

Biostimolante a base di batteri simbiontici che fissano azoto a livello fogliare (dose: 333 gr/ha in fase V3-V8).

Fonte addizionale di azoto che non è soggetta a perdite

Sotto il suolo

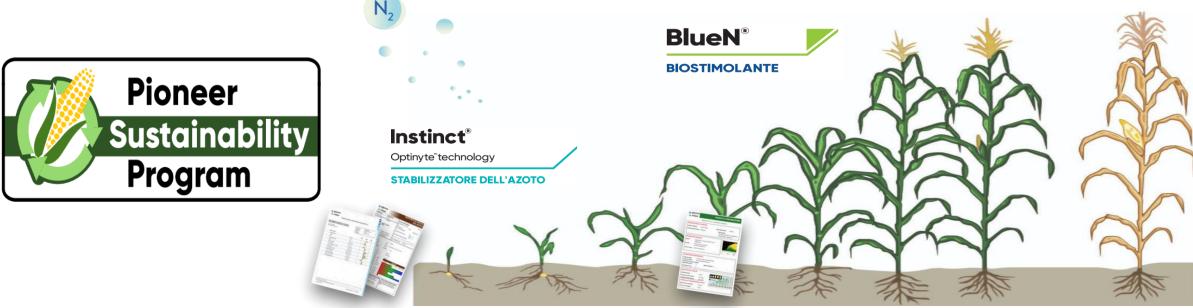
Instinct*

Optinyte technology

STABILIZZATORE DELL'AZOTO

Stabilizzatore dell'azoto in combinazione con i fertilizzanti distribuiti in pre-semina (dose: 1,7 I/ha).

Migliora disponibilità di azoto proteggendolo da lisciviazione e denitrificazione



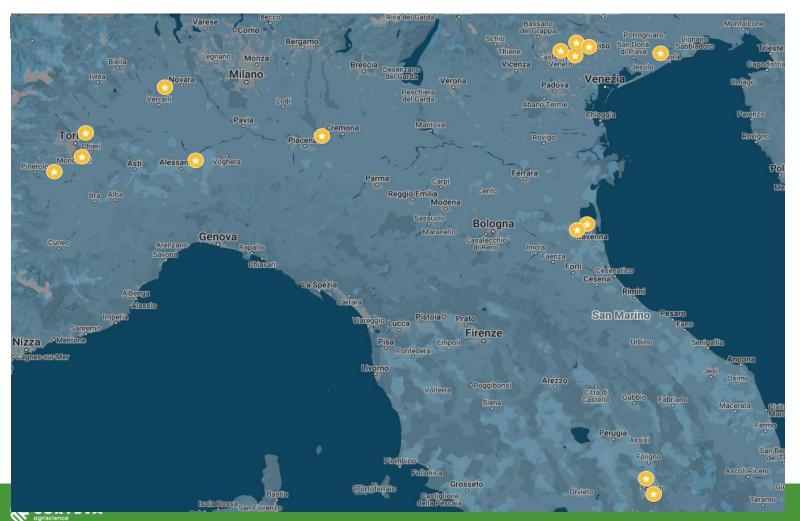
LA STRATEGIA PER UNA GESTIONE "RAZIONALE" DELL' AZOTO basata su:

- 1) Analisi del suolo e reflui e piano di fertilizzazione specifico
- 2) Nuove tecnologie per migliorare l'efficenza di utilizzo dell'azoto

Soluzioni Corteva Optinyte & Biological

Piano fertilizzazione Corteva Agrolab Analisi azoto Minerale

Piano Fertilizzazione calibrato Agrolab

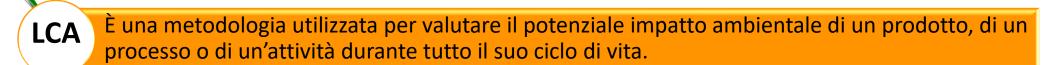


HUNDRED YEARS

II PROGETTO

Obiettivo: Valutare il potenziale impatto ambientale della produzione di mais considerando due differenti tecniche colturali: Convenzionale e Pioneer Sustainability Program.

La collaborazione



14 Confronti aziendali 2023-2024 gestione aziendale e PSP Altre 6 aziende 2025 in corso

Il Life Cycle Assessment

ISO 14040: Fornisce i principi generali della metodologia LCA.

ISO 14044: Offre le linee guida pratiche per applicare l'LCA.

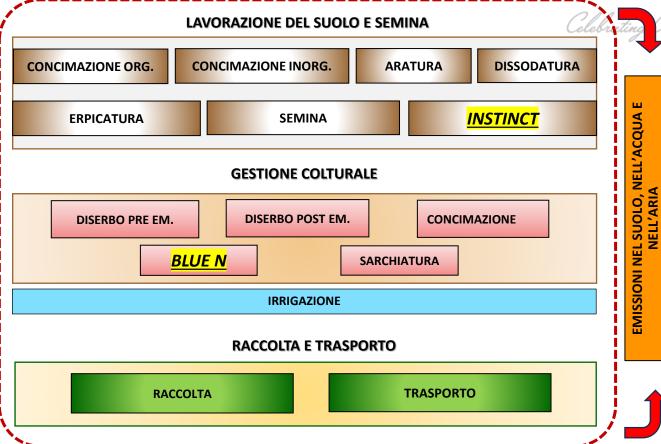
Analisi dell'inventario (LCI): finalizzata al reperimento dei dati necessari relativamente a input e output del sistema.

Valutazione degli impatti (LCIA): conversione e aggregazione dei dati di inventario in un numero limitato di indici sintetici numerici.

Interpretazione dei risultati e definizione di potenziali azioni di miglioramento.

3

DIPT. DI SCIENZE E POLITICHE AMBIENTALI

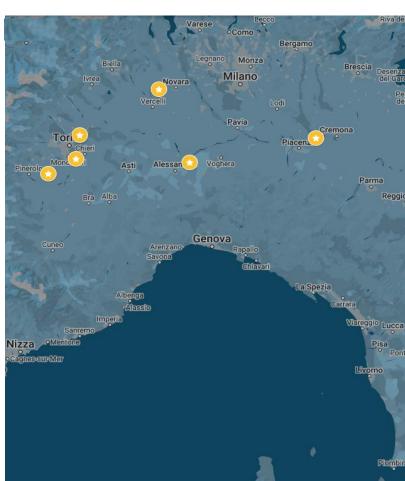

DATI PRIMARI

Analisi dei questionari rilevati da *Corteva Agriscience* nelle 14 aziende

Operazioni colturali, parco macchine, velocità di avanzamento, larghezze di lavoro, consumi gasolio e fattori produttivi, resa.

lubrificanti, fitofarmaci, sementi, elettricità Combustibili fossili, fertilizzanti, concimi,

One Hundred Years


RISULTATI DI RESA

Celebrating One Hundred Years

Mais Granella SS 14%

Mais Trinciato SS 35%

Mais Pastone SS 25%

	FARM	Location	Tipologia Prodotto	Convenzionale Rese (t/ha)	PSP Rese (t/ha)	Δ
	1	Alluvioni Piovera (AL)	Mais Granella	9.4	9.5	1%
enzani Garda Peso del (2	Settimo Torinese (TO)	Mais Pastone integrale	28,8	29.3	2%
	3	Casalbeltrame (NO)	Mais Trinciato	77.6	80.5	4%
	4	Melzo (MI)	Mais Granella	14.8	15.1	2%
t	5	Spoleto (PG)	Mais Trinciato	27.3	22	21%
1	6	Meleti (LO)	Mais Trinciato	59.5	54.2	10%
igio l	7	Troffarello (TO)	Mais Granella	9.8	9.9	1%
eca Ponte	8	Sant Alberto (RA)	Mais Trinciato	60.1	62.5	4%
	9	Sant Alberto (RA)	Mais Pastone integrale	37.3	34.7	-7%
	10	Vadelago (TV)	Mais Trinciato	72.3	70.6	-2%
	11	Castelfranco Veneto (TV)	Mais Trinciato	45.5	48.4	6%
·	12	Castelfranco Veneto (TV)	Mais Trinciato	46.2	48.5	5%
1	13	Castagnole Piemonte (TO)	Mais Trinciato	51.1	51.7	1%
bino	14	Limena (PD)	Mais Trinciato	24.7	25.0	1%

DATI SECONDARI: emissioni derivanti dalla fertilizzazione Colobrating One Hundred Years

Sono state stimate le emissioni derivanti dal processo di concimazione mediante il modello di *Brentrup et al. 2000*

LETAME

Quantità e tipologia di sostanza organica e fertilizzanti minerali introdotti nel suolo

LIQUAME -SEPARATO LIQUIDO da biogas

- Mese e temperatura media al momento della distribuzione
- Tempo che intercorre tra spandimento e interramento
- Caratteristiche pedologiche terreno
- Precipitazioni estive ed autunnali
- Contenuto di azoto e fosforo nei fertilizzanti organici e minerali

UREA

BIOSTIMOLANTE

Instinct® Optinyte"technology STABILIZZATORE DELL'AZOTO Incremento deposizione atmosferica derivante dall'azotofissazione di

50 kg/ha/anno

Riduce del 51% le emissioni di protossido d'azoto derivanti dall'impiego di fertilizzanti organici.

Emissioni legate alla fertilizzazione

Farm	Ammonia	Dinitrogen monoxide	Nitrate	Phosphate	
	kgNH ₃ /ha	kgN₂O/ha	kgNO₃/ha	kgPO ₄ /ha	
1 CS	50.27	4.61	509.30	0.84	
Δ	-48%	-75%	-46%	0%	
2 CS	105.48	6.71	394.15	1.91	
Δ	-27%	-71%	-79%	0%	
3 CS	40.92	9.35	551.25	3.50	
Δ	-41%	-59%	-37%	0%	
4 CS	16.63	4.80	184.50	4.41	
Δ	-50%	-16%	+26%	0%	
5 CS	59.6	1.96	53.99	2.00	
Δ	0%	-51%	+32%	0%	
6 CS	157.12	4.67	69.11	5.87	
Δ	0%	-30%	+36%	0%	
7 CS	59.63	7.47	1061.14	2.90	
Δ	-44%	-66%	-25%	0%	

Farm	Ammonia	Dinitrogen monoxide	Nitrate	Phosphate	
	kgNH₃/ha	kgN₂O/ha	kgNO₃/ha	kgPO ₄ /ha	
8 CS	79.07	10.83	1618.03	4.22	
Δ	-53%	-67%	-33%	-37%	
9 CS	93.90	2.65	273.69	2.22	
Δ	-92%	-58%	-79%	-50%	
10 CS	47.54	7.58	804.36	2.73	
Δ	-44%	-63%	-17%	0%	
11 CS	50.33	3.40	1030.15	4.06	
Δ	-33%	-22%	-13%	0%	
12 CS	43.27	3.46	1044.46	4.06	
Δ	-38%	-22%	-12%	0%	
13 CS	44.20	8.19	1200.04	4.27	
Δ	-21%	-56%	+4%	0%	
14 CS	40.18	8.32	1566.16	3.72	
Δ	-33%	-58%	+1%	0%	

VALUTAZIONE DEGLI IMPATTI

SimaPro

ISO 14040:2006 (Environmental management- Life cycle assessment - Principles and framework) e 14044:2006 (Environmental management - Life cycle assessment - Requirements and guidelines).

CATEGORIE D'IMPATTO

- 1. Cambiamento climatico, CC (kg CO₂ eq.);
- 2. Assottigliamento strato di ozono, OD (mg CFC11 eq.);
- 3. Formazione fotochimica di ozono, POF (kg NMVOC eq.);
- 4. Formazione di particolato, PM (disease inc./106);
- 5. Tossicità umana, non cancerogena, HT-nc (CTUh/106);
- 6. Tossicità umana, cancerogena, HT-c (CTUh/106);
- 7. Acidificazione, A (mol H+ eq);
- 8. Eutrofizzazione acque dolci, FE (kgP eq);
- 9. Eutrofizzazione marina, ME (kgN eq);
- 10. Eutrofizzazione terrestre, TE (mol N eq);
- 11. Ecotossicità acque dolci, FEx (CTUe);
- 12. Uso risorse fossili, FRU (MJ);
- 13. Uso risorse minerali e metalliche, MMRU (g Sb eq).

RISULTATI: riduzione % per Ton di Trinciato

Catanania di incusatta	FARMS								
Categoria di impatto	3	5	6	8	10	11	12	13	14
Acidificazione	-40%	-17%	-9%	-56%	-40%	-35%	-48%	-21%	-32%
Cambiamento climatico	-43%	-29%	-24%	-56%	-40%	-22%	-28%	-34%	-36%
Ecotossicità acque dolci	-9%	-16%	-9%	-16%	4%	-6%	-7%	0%	-1%
Formazione particolato	-41%	-17%	-9%	-55%	-41%	-36%	-49%	-21%	-33%
Eutrofizzazione marina	-38%	82%	66%	-36%	-15%	-18%	-17%	3%	-3%
Eutrofizzazione acque dolci	-6%	-16%	-9%	-42%	-1%	-8%	-8%	-2%	-3%
Eutrofizzazione terrestre	-41%	-17%	-9%	-56%	-41%	-36%	-49%	-21%	-32%
Tossicità umana - cancerogena	-16%	-12%	-7%	-34%	-15%	-16%	-13%	-7%	-11%
Tossicità umana - non cancerogena	-23%	-17%	-8%	-24%	-25%	-25%	-24%	-13%	-18%
Assottigliamento strato di ozono	-8%	-8%	-7%	-83%	-22%	-12%	-15%	-11%	-15%
Formazione fotochimica di ozono	-8%	-11%	-9%	-63%	-8%	-11%	-24%	-4%	-6%
Uso risorse fossili	-22%	-12%	-8%	-50%	-22%	-19%	-27%	-12%	-16%
Uso risorse minerali e metalli	-20%	-10%	-8%	-66%	-29%	-19%	-16%	-18%	-21%

-83%: riduzione percentuale della categoria di impatto Assottigliamento strato di ozono, attribuibile all'uso di fertilizzzanti minerali, in particolare l'urea applicate alla concimazione di copertura, il cui impiego è stato ridotto da 0.60 t/ha a 0.26 t/ha.

+82%, +66% e +3%: aumento della categoria di impatto dell'eutrofizzazione marina, dovuto a un maggiore aumento della lisciviaione dell'azoto correlato all'applicazione di *BlueN*®.

CONCLUSIONI

- L'uso di tecniche innovative, come l'inibitore della *nitrificazione* e il biostimolante *BlueN* come fonte alternativa di azoto, ha consentito una **riduzione** fino al **56%** dell'impatto sul cambiamento climatico, sempre partendo da un piano di fertilizzazione specifico per ciascun appezzamento.
- L'inibitore della nitrificazione riduce le emissioni di protossido di azoto, mentre il biostimolante consente un minor utilizzo di fertilizzanti minerali, anche se in alcuni casi aumenta l'eutrofizzazione marina.
- La **meccanizzazione** agricola influisce sull'impatto ambientale, con una variazione dell'1-2% tra i due scenari solo se è necessario un passaggio aggiuntivo per distribuire il biostimolante.
- Nel complesso, questi risultati, sebbene debbano essere verificati per un periodo di almeno tre anni al fine di valutare meglio l'effetto delle condizioni del suolo e del clima, dimostrano come una gestione sostenibile migliori l'efficienza ambientale senza compromettere la produttività.

