

Sostenibilità delle bioenergie ai sensi del Decreto 7 agosto 2024 - AGGIORNAMENTI -

Lorella Rossi, CIB - Consorzio Italiano Biogas

Decreto Sostenibilità 2024

Impianti biometano:

tutti certificati!

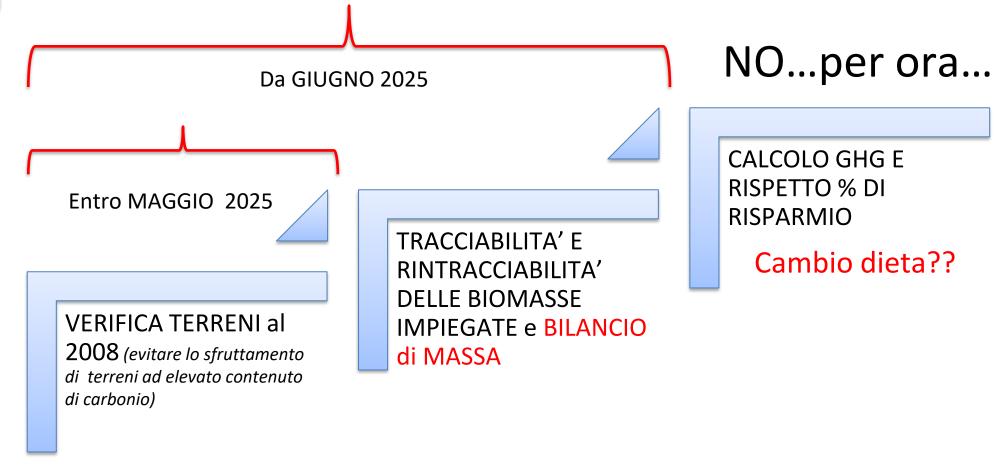
Impianti biogas:

esclusivamente quelli con «Potenza termica ≥ 2 MWth

Impianti biogas esistenti: Decreto Sostenibilità 2024

Impianti biogas esistenti SOPRA SOGLIA (Art. 21, comma 4)

➤ Decorso il periodo <u>transitorio (31/12/25) di 9 mesi</u>, la sostenibilità è dimostrata unicamente mediante l'adesione al Sistema nazionale di certificazione della sostenibilità ovvero a un sistema volontario di certificazione prescritto dall'articolo 43, comma 1, del Dlsg 199/2021



Sino a dic. '25: Autodichiarazione o certificazione con OdC

Da gennaio 2026: Certificazione con OdC

Impianti biogas SOPRA SOGLIA - CERTIFICAZIONE degli ESISTENTI

....ma è in fase avanzata il recepimento della RED III

Impianti biogas SOPRA SOGLIA - CERTIFICAZIONE post RECEPIMENTO RED III

- ➤ In caso di produzione di energia elettrica, riscaldamento e raffrescamento da combustibili gassosi da biomassa in impianti entrati in funzione prima del 1 gennaio 2021
 - Risparmio di almeno l'80 % dopo i primi 15 anni di funzionamento e non prima del 1 gennaio 2026.

BIOGAS ESISTENTI (≥ 2 MWth)

	2024 2025		2025	2026 2027	2028
set-24		Dic. '25			
Tutti Autodichiarazione e avvio percorso certificazion			ercorso certificazione		
15 anni conclusi entro fine 2025			Certific NO risp. GHG	Certific. con risp. GHG	Certific.con risp. GHG
15 anni conclusi entro fine 2027		Certific NO risp. GHG	Certific NO risp. GHG	Certific.con risp. GHG	

BIOGAS E CALCOLI GHG

Stime preliminari

- ✓ Risparmio ≥ 80%
- √ FFC: 183 gCO2eq/MJ di energia elettrica

- Ad oggi abbiamo a disposizione i dati forniti dal DLgs 199/2021 (recepimento RED II)
- Ad oggi NON CI SONO ANCORA emissioni STD analoghe a quelle della UNI/TS 11567:2024 per biometano

EMISSIONI GHG ENERGIA ELETTRICA DA BIOGAS: D.LGS 199/2021

Casistiche alimentazione ausiliari

Configurazione impiantistica	ENERGIA ELETTRICA	ENERGIA TERMICA	
Caso 1 (Config. Dallo stesso cogeneratore a biogas o da altre rinnovabili			
Caso 2	Dalla rete	Dal cogeneratore a biogas	
Caso 3 (Conf. Base)	Dalla rete	Da caldaia a biogas o altra fonte rinnovabile	

- Digestato scoperto o Digestato coperto (60 giorni)
- Unico valore di emissione dal cogeneratore per tutte le biomasse (Eu= 12,5 g CO2eq/MJ di biogas)
- Rendimento elettrico: 36% o 32,5%

EMISSIONI GHG ENERGIA ELETTRICA DA BIOGAS: D.LGS 199/2021

* Risparmio GHG in caso di DIGESTATO CHIUSO (60 giorni)

			EFFLUENTE
	MAIS	BIORIFIUTO	ZOOTECNICO
Caso 1 (Config. Rinnov.)	53%	78%	240%
Caso 2	47%	68%	219%
Caso 3 (Conf. Base)	43%	66%	235%

- ➤ Mais e biorifiuto (sottoprodotti) da soli NON raggiungono l'80%
- ➤ Effluenti ampiamente sostenibili

- La CT 284 del CTI sta elaborando una metodologia semplificata per il calcolo delle emissioni STD di CO2eq. della filiera biogas a partire da:
 - o emissioni di cui al DLgs 199/2021
 - emissioni biometano per trasporti di cui alla UNI/TS 11567:2024
- Non si tratta di una nuova norma UNI, ma di una «Nota integrativa alla Norma UNI/TS 11567:2024» per il calcolo delle emissioni della filiera biogas.

BIOGAS per EE

(gCO ₂ eq/MJ biogas) Combustione Combustione biogas Trasporto	Eec	Ер	Eu	Etd	Crediti effl.zoot.	E tot. BIOGAS			
	(gCO₂eq/MJ biogas)								
	Coltivazione								

Emissione totale EC_{el} (g CO2eq/MJ_{En.Elettr}.) =

E tot. biogas

Rendimento elettrico (μ_{el})

GHG saving =
$$\frac{(FFC - EC_{el})}{FFC}$$

Dieta con risparmio GHG ≥ 80% : simulazioni preliminari

- **CASO 1**: energia elettrica e calore da fonti rinnovabili (cogeneratore)
- **❖ DIGESTATO COPERTO 30 giorni, Rendimento elettrico 32,5%**
- * Rese CH4 reali per effluenti

	Senza trattamento fumi (Eu =12,5 g)			Con trattamento fumi (Eu=0)		
	Peso Energia		Peso		Energia	
	(t/g) (%)		(%)	(t/g)	(%)	(%)
Mais	30	40,5%	84,4%	30	71,4%	95,2%
Liquame bovino (SS 8%)	44	59,5%	15,6%	12	28,6%	4,8%
	74			42		

Dieta con risparmio GHG ≥ 80% : simulazioni preliminari

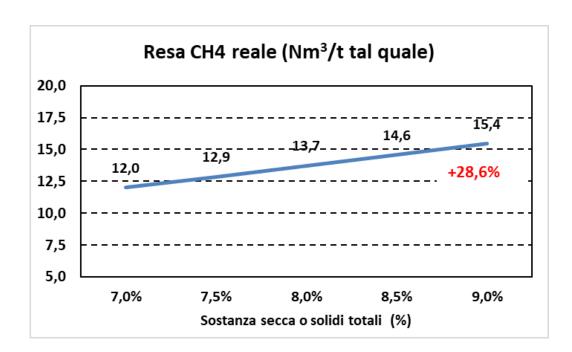
- **CASO 1**: energia elettrica e calore da fonti rinnovabili (cogeneratore)
- **❖ DIGESTATO SCOPERTO, Rendimento elettrico 32,5%**
- * Rese CH4 reali per effluenti

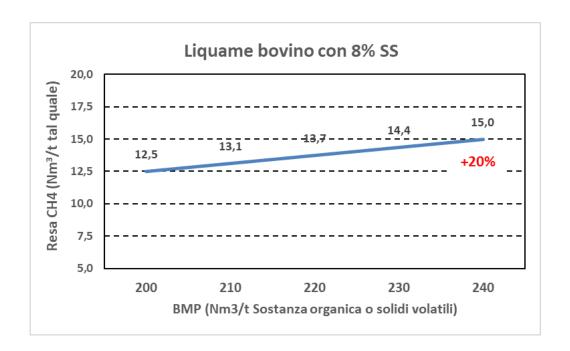
	Senza trattamento fumi (Eu =12,5 g)			Con trattamento fumi (Eu=0)		
	Peso Energia			Peso		Energia
	(t/g) (%)		(%)	(t/g)	(%)	(%)
Mais	0,3	2,9%	19,2%	1,15	10,3%	47,6%
Liquame bovino (SS 8%)	10	97,1%	80,8%	10	89,7%	52,4%
	10,3			11,15		

SOSTENIBILITA' BIOGAS E BIOMETANO

Elementi cruciali per affrontare il BILANCIO di MASSA e il relativo calcolo GHG

- Stoccaggio digestato coperto 30gg con recupero biogas
- Pesatura delle biomasse in ingresso
- Adeguato monitoraggio della qualità delle matrici, effluenti zootecnici e sottoprodotti in primis:
 - sostanza secca, sostanza organica
 - resa metanigena specifica (test BMP)




SOSTENIBILITA' BIOGAS E BIOMETANO

RESA METANIGENA di un LIQUAME BOVINO

- al variare della SOSTANZA SECCA

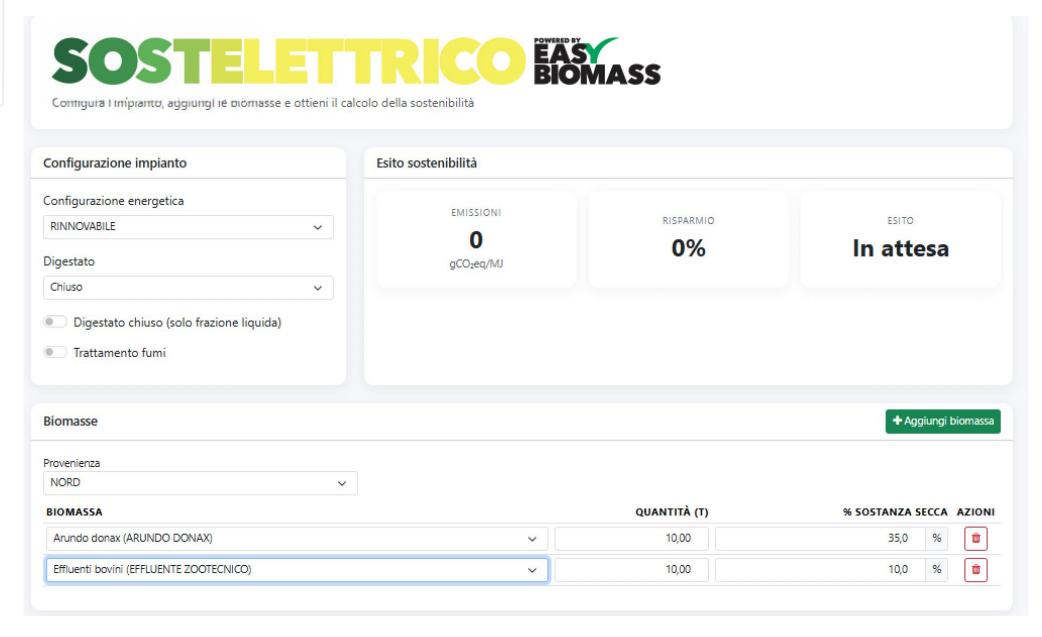
- al variare della RESA METANIGENZA SPECIFICA (BMP)

Obbligo del calcolo GHG e relativo RISPARMIO

Impianti biometano (tutti)

Impianti biogas sopra soglia:

- impianti in PMG immediatamente al recepimento della RED III
- o altri impianti al termine del 15 anni di TO


Considerazioni conclusive

- ➤ Sono simulazioni del tutto preliminari da prendere con la dovuta cautela
- ➤ Stoccaggio coperto, trattamento fumi, rendimento elettrico sono variabili di rilievo
- ➤ Resta confermata l'importanza della presenza di effluenti zootecnici
- ➤ Le emissioni di altre colture possono essere più basse di quelle del mais, ma occorre attendere la conclusione dei lavori della CT 284 del CTI.

Vi è sembrato tutto troppo complicato?

Grazie per l'attenzione!

Lorella Rossi

(l.rossi@consorziobiogas.it)

CIB
Consorzio Italiano Biogas e Gassificazione
segreteria@consorziobiogas.it

c/o Parco Tecnologico Padano Via Einstein, Lodi (LO) www.consorziobiogas.it

